Komputasi

Ti Wikipédia, énsiklopédia bébas
Luncat ka: pituduh, sungsi
Panneau travaux.png Artikel ieu keur dikeureuyeuh, ditarjamahkeun tina basa Indonésia.
Bantosanna diantos kanggo narjamahkeun.

Komputasiat, 2007 September 07 Penyéarah Tiga Fasa Terkendali

Berdasarkan semikonduktor yang digunakan dan variasi tegangan keluarannya, penyéarah tiga-fasa dapat diklasifikasikan menjadi : • Penyerah tak terkendali. • Penyéarah terkendali. Umumnya senikonduktor penyéarah terkendali menggunakan bahan semikonduktor berupa thyristor, atau menggunakan thyristor dan dioda secara bersamaan.

Berdasarkan bahan semikonduktar yang digunakan dan sistem kendalinnya penyéarah tiga-fasa terkendali umumnya dapat dibédakan menjadi : • Half wave Rectifiers • Full wave Rectifiers-Full Controller • Full wave Rectifiers-Semi Controller Hal-hal yang menjadi masalah dalam teknik penyerahan antara lain adalah trafo penyéarahan, gangguan-gangguan tegangan lebih atau arus lebih yang membahayakan dioda / thyristor, keperluan daya buta untuk beban penyéarahan, harmonisa yang timbul akibat gelombang non sinus sarta sirkit elektronik pengatur penyalaan. Skema penyéarah terkendali tiga-fasa, masing-masing ditunjukkan pada gambar dibawah ini.

Gb. 1 Penyéarah terkendali.; (a) Half wave rectifiers, (b) Full wave rectifiers-semi controller, (c) Full wave rectifiers-Full controller

Gb. 2 Gelombang tegangan dan arus penyéarah tiga-fasa jenis Full wave Rectifier-semi controller Dalam aplikasinya, sirkit-sirkit penyéarahan biasanya dilengkapi dengan sirkit. pengatur tambahan seperti pengatur tegangan pembatas arus dan-lain-lain sesuai dengan jenis pemakaiannya. Bidang gerak teknik penyéarahan meliputi sistem¬-sistem pengatur putaran mesin DC pada mesin cetak kertas, tekstil, mesin las DC, pengisi baterai,sampai pada pengatur tegangan konstan generator sinkron (AVR). Pada praktikum dipelajari lebih lanjut mengenai karakteristik system penyéarahan khususnya penyéarah tiga fasa gelombang penuh setengah terkendali. Tegangan keluaran penyéarah 1.(b) ditunjukkan pada Gb:2 dan secara matematik dapat dijelaskan sebagai berikut : Pada grup komutasi T1-2-3, karena yang digunakan thyristor, keluarannya tergantung pada sudut penyalaan , sehingga keluarannya : ..... (1) Sedangkan pada grup kornutasi D1-2-3. , karena menggunakan dioda, maka keluarannya menjadi :

..... (2) Tegangan keluaran total pada beban adalah dengan mensubstitusikan (1) dan (2) diperoleh :

The theory of computation began éarly in the twentieth century, before modern electronic computers had been invented.

At that time, mathematicians were trying to find which math problems can be solved by simple methods and which cannot. The first step was to define what they méant by a "simple method" for solving a problem. In other words, they needed a formal modél of computation.

Several different computational modéls were devised by these éarly reséarchers. One modél, the Turing machine, stores characters on an infinitely long tape, with one square at any given time being scanned by a réad/write héad. Another modél, recursive functions, uses functions and function composition to operate on numbers. The lambda calculus uses a similar approach. Still others, including Markov algorithms and Post systems, use grammar-like rules to operate on strings. All of these formalisms were shown to be equivalent in computational power—that is, any computation that can be performed with one can be performed with any of the others. They are also equivalent in power to the familiar electronic computer, if one pretends that electronic computers have infinite memory. Indeed, it is widely believed that all "proper" formalizations of the concept of algorithm will be equivalent in power to Turing machines; this is known as the Church-Turing thesis. In general, questions of what can be computed by various machines are investigated in computability theory.

The théory of computation studies these modéls of general computation, along with the limits of computing: Which problems are (provably) unsolvable by a computer? (See the halting problem and the Post correspondence problem.) Which problems are solvable by a computer, but require such an enormously long time to compute that the solution is impractical? (See Presburger arithmetic.) Can it be harder to solve a problem than to check a given solution? (See complexity classes P and NP). In general, questions concerning the time or space requirements of given problems are investigated in complexity theory.

In addition to the general computational modéls, some simpler computational modéls are useful for special, restricted applications. Regular expressions, for example, are used to specify string patterns in UNIX and in some programming languages such as Perl. Another formalism mathematically equivalent to regular expressions, Finite automata are used in circuit design and in some kinds of problem-solving. Context-free grammars are used to specify programming language syntax. Non-deterministic pushdown automata are another formalism equivalent to context-free grammars. Primitive recursive functions are a defined subclass of the recursive functions.

Different modéls of computation have the ability to do different tasks. One way to méasure the power of a computational modél is to study the class of formal languages that the modél can generate; this léads to the Chomsky hierarchy of languages.

The following table shows some of the classes of problems (or languages, or grammars) that are considered in computability théory (blue) and complexity théory (green). If class X is a strict subset of Y, then X is shown below Y, with a dark line connecting them. If X is a subset, but it is unknown whether they are equal sets, then the line is lighter and is dotted.

Decision Problem
SolidLine.png SolidLine.png
Type 0 (Recursively enumerable)
Undecidable
SolidLine.png
Decidable
SolidLine.png
EXPSPACE
DottedLine.png
EXPTIME
DottedLine.png
PSPACE
SolidLine.png SolidLine.png DottedLine.png DottedLine.png DottedLine.png DottedLine.png
Type 1 (Context Sensitive)
SolidLine.png DottedLine.png DottedLine.png DottedLine.png
PSPACE-Complete
SolidLine.png SolidLine.png DottedLine.png DottedLine.png DottedLine.png
SolidLine.png SolidLine.png
Co-NP
DottedLine.png
NP
SolidLine.png SolidLine.png DottedLine.png DottedLine.png DottedLine.png DottedLine.png
SolidLine.png SolidLine.png DottedLine.png
BPP
BQP
NP-Complete
SolidLine.png SolidLine.png DottedLine.png DottedLine.png DottedLine.png
SolidLine.png SolidLine.png
P
SolidLine.png SolidLine.png DottedLine.png DottedLine.png
SolidLine.png
NC
P-Complete
SolidLine.png SolidLine.png
Type 2 (Context Free)
SolidLine.png
Type 3 (Regular)

For further reading[édit | édit sumber]

  • Garey, Michael R., and David S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman & Co., 1979. The standard reference on NP-Complete problems - an important category of problems whose solutions appéar to require an impractically long time to compute.
  • Hein, James L: Theory of Computation. Sudbury, MA: Jones & Bartlett, 1996. A gentle introduction to the field, appropriate for second-yéar undergraduate computer science students.
  • Hopcroft, John E., and Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation. réading, MA: Addison-Wesley, 1979. One of the standard references in the field.
  • Taylor, R. Gregory: Models of Computation. New York: Oxford University Press, 1998. An unusually réadable textbook, appropriate for upper-level undergraduates or beginning graduate students.
  • The Complexity Zoo: A huger list of complexity classes, as reference for experts.
  • Computability Logic: A théory of interactive computation. The main web source on this new subject.

Tempo oge[édit | édit sumber]


This article contains some content from an article by Nancy Tinkham, originally posted on Nupedia. This article is open content.