Liang hideung

Luncat ka: pituduh, sungsi
Gambar hasil simulasi: liang hideung di hareupeun Galaksi Bima Sakti lamun ditempo tina jarak 600 km. Liang hideung ieu boga massa 10 kalieun massa panonpoé. Sangkan bisa mertahankan diri dina jarak 600 km (henteu katarik ka jero liang) diperlukeun laju reaksi (ka arah lawan) nu gancangna kurang leuwih 400 yuta g.[1]
Rélativitas umum
$G_{\mu \nu} = {8\pi G\over c^4} T_{\mu \nu}\,$
Jejer konci
Pangwanoh
Rumus matematis
Konsép dasar
Special relativity
Equivalence principle
World line · Riemannian geometry

Kotak ieu: temposawalaédit

Liang hideung (Ing: black hole) nyaéta hiji wewengkon di angkasa nu mangrupa tempat museurna massa anu pohara gedéna sahingga ngahasilkeun gaya gravitasi anu kacida kuatna nu temahna moal aya naon waé ogé nu bakal bisa leupas lamun geus ancrub kana event horizonna kajaba ngaliwatan torowongan kuantum. Ngaran ieu mucunghul alatan kanyataan yén radiasi éléktromagnétik (contona cahaya) nu geus asup kana ieu liang, teu bisa leupas deui, cahayana henteu nepi ka panon urang sahingga urang henteu bisa nempo eta wewengkon, atawa ngageblég hideung. Liang hideung bisa kawénéhan lamun aya kajadian interaksi jeung bahan di saluareun sisina nu disebut event horizon, contona ku cara narik gas tina béntang. Gas baris muter katarik ka jero liang, jadi panas nepi ka hawana kacida pisan panasna sarta ngaluarkeun sajumlah gedé radiasi dina prosesna; radiasi ieu nu nepi kana mata urang sahingga urang bisa nempo ieu prosés[2][3][4]

 Artikel ieu keur dikeureuyeuh, ditarjamahkeun tina basa Inggris. Bantosanna diantos kanggo narjamahkeun.

While the idea of an object with gravity strong enough to prevent light from escaping was proposed in the 18th century, black holes, as presently understood, are described by Einstein's theory of general relativity, developed in 1916. This theory predicts that when a large enough amount of mass is present within a sufficiently small region of space, all paths through space are warped inwards towards the center of the volume, forcing all matter and radiation to fall inward.

While general relativity describes a black hole as a region of empty space with a pointlike singularity at the center and an event horizon at the outer edge, the description changes when the effects of quantum mechanics are taken into account. Research on this subject indicates that, rather than holding captured matter forever, black holes may slowly leak a form of thermal energy called Hawking radiation.[5][6][7] However, the final, correct description of black holes, requiring a theory of quantum gravity, is unknown.

Rujukan

1. "Step by Step into a Black Hole"
2. Hawking, Stephen (1974). "Black Hole Explosions". Nature 248: pp. 30-31.
3. McDonald, Kirk T. (1998). "Hawking-Unruh Radiation and Radiation of a Uniformly Accelerated Charge". Princeton University: p. 1.
4. Hawking, Stephen, Penrose, Roger (2000). The Nature of Space and Time, New Ed edition, p. 44, Princeton University Press. ISBN 978-0-691-05084-3.

Bacaan salajengna

Buku teks jeung monograp universitas

• Carter, B. (1973). Black hole equilibrium states, in Black Holes, eds. DeWitt B. S. and DeWitt C.
• Chandrasekhar, Subrahmanyan (1999). Mathematical Theory of Black Holes, Oxford University Press. ISBN 0-19-850370-9.
• Frolov, V. P. and Novikov, I. D. (1998), Black hole physics.
• Hawking, S. W. and Ellis, G. F. R. (1973), The large-scale structure of space-time, Cambridge University Press.
• Melia, Fulvio (2007). The Galactic Supermassive Black Hole, Princeton U Press. ISBN 978-0-691-13129-0.
• Taylor, Edwin F.; Wheeler, John Archibald (2000). Exploring Black Holes, Addison Wesley Longman. ISBN 0-201-38423-X.
• Thorne, Kip S.; Misner, Charles; Wheeler, John (1973). Gravitation, W. H. Freeman and Company. ISBN 0-7167-0344-0.
• Wald, Robert M. (1992). Space, Time, and Gravity: The Theory of the Big Bang and Black Holes, University of Chicago Press. ISBN 0-226-87029-4.

Paper riset

• Hawking, S. W. (July 2005), Information Loss in Black Holes, arxiv:hep-th/0507171. Stephen Hawking's purported solution to the black hole unitarity paradox, first reported at a conference in July 2004.
• Ghez, A.M. et al. Stellar orbits around the Galactic Center black hole, Astrophysics J. 620 (2005). arXiv:astro-ph/0306130 More accurate mass and position for the black hole at the centre of the Milky Way.
• Hughes, S. A. Trust but verify: the case for astrophysical black holes, arXiv:hep-ph/0511217. Lecture notes from 2005 SLAC Summer Institute.