Sebaran-t student

Ti Wikipédia, énsiklopédia bébas
Luncat ka: pituduh, sungsi

Dina kamungkinan jeung statistik, sebaran-t atawa sebaran Student loba digunakeun keur nga-estimasi mean tina populasi nu kasebar sacara normal dina waktu ukuran sampelna leutik. Dasar nu kawentar Student's t-test nyaeta keur statistical significance tina dua sampel mean anu beda, sarta interval kapercayaan keur dua populasi means anu beda.

Asal tiori ngeunaan sebaran-t mimiti dipublikasi dina taun 1908 ku William Sealey Gosset dina paper nu ditulis pseudonym Student. Tiori Tes-t sarta hal nu pakait leuwih dipikaharti dina tulisan-tulisan R.A. Fisher, nu nyebut ieu sebaran ku "Student's distribution".

Student's distribution loba digunakeun lamun (saperti digunakeun dina statistik praktis) populasi simpangan baku teu dipikanyaho sarta bakal di-estimasi tina data. Dina buku teksbook dijelaskeun yen simpangan baku lamun dipikanyaho aya dua tipe nyaet: (1) dina hal ukuran sampel kacida gedena yen salah sahiji keur nganyahokeun simpangan baku tina data ku cara nga-estimasi varian lamun varian pasti, jeung (2) keur ngagambarkeun alesan sacara matematik, numana masalah estimasi simpangan baku kadangkadal "diabaikan" sabab lain ngarupakeun hal anu kudu dijelaskeun ku pangarang atawa instruktur.

Kumaha sebaran-t student loba dipake[édit | sunting sumber]

Anggap X1, ..., Xn ngarupakeun variabel acak bebas nu kasebar normal mibanda nilai harepan μ sarta varian σ2. Saterusna

\overline{X}_n=(X_1+\cdots+X_n)/n

dijadikeun "sample mean", sarta

S_n^2=\frac{1}{n-1}\sum_{i=1}^n\left(X_i-\overline{X}_n\right)^2

dijadikeun "sample variance". Saperti anu ditempo di handap ieu

Z=\frac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}

ngarupakeun sebaran normal nu mibanda mean 0 sarta variance 1. Gosset nalungtik hubungan kualitas jadi,

T=\frac{\overline{X}_n-\mu}{S_n/\sqrt{n}}

sarta nembongkeun yen T ngabogaan fungsi dénsitas probabilitas

f(t) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi\,}\,\Gamma(\nu/2)} (1+t^2/\nu)^{-(\nu+1)/2}

numana ν sarua jeung n − 1. Sebaran T eta ayeuna disebut sebaran-t. Parameter ν sacara konvensional disebut angka degrees of freedom atawa tingkat kabebasan. Sebaran gumantung kana nilai ν, lain kana nilai μ atawa σ; heunteu gumantungna ieu sebaran kana nilai μ jeung σ ngajadikeun sebaran-t-penting boh dina tiori sarta praktek.

Kumaha cara make sebaran t-student[édit | sunting sumber]

Interval dina titik ahir nyaeta

\overline{X}_n\pm A\frac{S_n}{\sqrt{n}}

numana A nyaeta pendekatan titik-persentasi sebaran -t, ngarupakeun interval kapercayaan keur μ. Saterusna, lamun nilai mean tina susunan observasi dipikanyaho maka bisa disebutkeun aya alesan keur merkirakeun yen data ngaboogan sebaran normal, bisa digunakeun sebaran-t keur nge-tes confidence limits nu sacara tiori mean kaasup nilai nu diprediksi - saperti nilai prediksi dina null hypothesis.

Hasil ieu digunakeun dina Student's t-test: beda antara dua sampel mean tina dua sebaran normal bakal mibanda kasebar sacara normal, sebaran-t bisa digunakeun keur ngetes beda ieu nu sacara alesan statistik bisa diperkirakeun bakal jadi nol.

Angka statistik sejen nunjukeun yen sebaran-t keur sampel anu ukuran sedeng aya dina kaayaan null hypothesis nu dipiharep, sabab kitu bentuk sebaran-t jadi dasar keur tes signifikan di kaayaan sejen nu sarua hadena waktu ngetes beda dua mean. Contona, sebaran Spearman's rank correlation coefficient, rho, dina kasus null (taya korelasi) nembongkeun hasil nu hade ku pendekatan sebaran-t keur ukuran sample leuweih ti 20.

Tempo prediction interval keur conto sejen nu make distribusi ieu.

Tiori lanjutan[édit | sunting sumber]

Hasil Gosset's bisa netepkeun hal nu leuwih umum. (Keur conto tempo Hogg and Craig, Bagean 4.4 and 4.8.) Anggap Z ngabogaan sebaran normal nu mibanda mean 0 sarta variance 1. Anggap V ngabogaan sebaran chi-kuadrat nu mibanda ν tingkat kabebasan. Terus kira-kira yen Z sarta V ngarupakeun bebas (tempo teorema Cochran). Mangka rasio

 \frac{Z}{\sqrt{V/\nu\ }}

ngabogaan sebaran-t nu mibanda ν tingkat kabebasan.

Keur sebaran-t nu mibanda ν tingkat kabebasan, nilai ekspektasi 0, sarta varian ν/(ν − 2) lamun ν > 2. Skewness na 0 sarta kurtosis na 6/(ν − 4) lamun ν > 4.

Fungsi sebaran kumulatif dijelaskeun dina fungsi béta teu lengkep,

\int_{-\infty}^t f(u)\,du = \left\{ 
\begin{matrix} 1 - \frac{1}{2} I_x(\nu/2,1/2) & \mbox{if}\quad t > 0 \\  \\
\frac{1}{2} I_x(\nu/2,1/2) & \mbox{otherwise}
\end{matrix}\right.,

nu mibanda

x = \frac{1}{1+t^2/\nu}.

Sebaran-t aya hubunganna jeung sebaran-F nyaeta: nilai kuadrat t nu mibanda ν tingkat kabebasan disebarkeun salaku F nu mibanda nilai 1 sarta ν tingkat kabebasan.

Sakabeh fungsi probability density sebaran-t digambarkeun dina bentuk bel salaku variabel sebaran normal nu mibanda nilai mean 0 sarta varian 1, iwal ti ngabogaan nilai nu leuwih handap sarta ngalegaan bentuk belna. Salaku jumlah tingkat kabebasan anu nambahan, sebaran-t ngadeukeutan sebaran normal nu mibanda nilai mean 0 sarta varian 1.

Gambar di handap ieu nunjukeun densitas sebaran-t dina kaayaan beuki naekna nilai ν. Sebaran normal ditempokeun dina garis biru keur perbandingan. Catetan yen sebaran-t (garis beureum) jadi rapet jeung sebaran normal lamun ν oge ningkat. Keur ν = 30 sebaran-t persis sarua jeung sebaran normal.

Density of the t-distribution for 1, 2, 3, 5, 10, and 30 df
T distribution 1df.png T distribution 2df.png T distribution 3df.png
T distribution 5df.png T distribution 10df.png T distribution 30df.png

Sumber sejen[édit | sunting sumber]

  • "Student" (W.S. Gosset) (1908) The probable error of a mean. Biometrika 6(1):1--25.
  • M. Abramowitz and I. A. Stegun, eds. (1972) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover. (See Section 26.7.)
  • R.V. Hogg and A.T. Craig (1978) Introduction to Mathematical Statistics. New York: Macmillan.

Tumbu kaluar[édit | sunting sumber]