Telepon

Ti Wikipédia, énsiklopédia bébas basa Sunda
Luncat ka: pituduh, sungsi
Telefon Touch Tone® kalawan lampu panunggu pesen
1896 Telefon (Swedia)

Telepon nyaéta alat telekomunikasi anu digunakeun pikeun ngirimkeun jeung narima sora; paling ilahar sora manusa. Telepon kiwari ngarupakeun kalengkepan rumah tangga nu paling ilahar di dunya. Lolobana, sinyal sora tina telepon diliwatkeun kana jaringan telepon umum.

Prinsip dasar[édit | sunting sumber]

Telepon ngirimkeun dua rupa informasi: sinyal jeung sora siliganti dina waktu nu béda dina sapasang kawat. Terminal telepon ogé dilengkepan ku papan nomer pikeun ngasupkeun nomer telepon (lambang alamat tujuan) waktu rék nelepon ka pamaké telepon lianna.

Waktu panelepon ngangkat gagang telepon, hal ieu mgusikkeun switch dina jero terminal anu ngakibatkeun telepon asup kana kaayaan aktif atawa off hook dimana hiji résistor nyambungsingket kadua kawat anu sapasang kasebut, anu ngabalukarkeun arus listrik DC ngamalir nuju ka sentral telepon. Saenggeus séntral narima arus DC, saterusna séntral ngirimkeun sinyal nada call setup sangkan panelepon muter nomer tujuan.

Terminal telepon ogé dilengkepan ku alat isarat (signaling) nu ngandung hiji kohkol (bél) pikeun ngingetkeun pamaké ngeunaan kadatangan ajakan nelepon ti pamaké lianna.

Waktu panelepon neken tombol-tombol nomer, hal ieu ngabalukarkeun panghasil (generator) nada dina jero papan nomer ngahasilekun nada DTMF anu ngalambangkeun alamat pamaké telepon lianna. Séntral nyambungkeun sapasang kawat milik panelepon kana sapasang kawat milik pamaké telepon anu dituju sarta méré béja pamaké kasebut ku cara ngirimkeun sinyal nada kirining (dering) anu ngakibatkeun bél dina terminal tujuan disada.

Mangsa telepon henteu aktif (on hook), bel, panghasil sora, alat isarat panghasil sinar atawa alat isarat lianna, disambungkeun kana kawat ngaliwatan hiji kapasitor. Telepon anu henteu aktif henteu nyambungsingket kawat, sahingga séntral telepon nyaho yén telepon kasebut dina kaayaan on hook; ngan bél anu disambungkeun sacara listrik. Mangsa urang nelepon hiji nomer, séntral telepon ngabangkitkeun sinyal pulsa tegangan tinggi, anu ngabalukarkeun alat isarat disada atawa méré nyaho pihak anu ditelepon. Mangsa pihak anu ditelepon ngangkat gagang telepon, switchhook megantkeun sambungan kana alat isarat, terus nyambung kana alat pangirim / panarima sora, sarta hiji résistor ngahubungsinket kawat, negeskeun yén telepon geus dijawab jeung dina kaayaan aktif. Lamun kadua pasang kawat off hook, pangiriman jeung panarimaan isarat eureun. Kadua beulah pihak nyambung sarta bisa ngobrol ngagunakeun alat pangirim / panarima sora anu aya dina telepon.

Alat pangirim / panarima sora telepon ayana dina gagang telepon nu aya dina terminal, sarta ngandung hiji transmitter (anu mindeng disebut mikropon) jeung hiji panarima atawa receiver. Transmitter, anu dibéré énergi tina kawat, ngahasilkeun arus listrik anu robah-robah gumantung gelombang tekenan akustik anu dihasilkeun ku sora. Parobahan arus listrik anu dihasilkeun dirambatkeun sapanjang kawat telepon ka terminal tujuan, dimana arus listrik dimaksud dieupankeun kana gulungan kawat dina receiver, anu ngarupakeun loudspeaker miniatur. Arus listrik anu robah-robah dina gulungan kawat ngabalukarkeun inyana maju-mundur, ngahasilkeun gelombang tekenan akustik tina transmitter.

Panneau travaux.png Artikel ieu keur dikeureuyeuh, ditarjamahkeun tina basa Inggris.
Bantosanna diantos kanggo narjamahkeun.

When a party "hangs up" (puts the handset on the cradle), DC current ceases to flow in that line, thus signaling to the exchange switch to disconnect the telephone call.

History[édit | sunting sumber]

Credit for inventing the electric telephone remains in dispute. Antonio Meucci, Johann Philipp Reis, Alexander Graham Bell, and Elisha Gray, among others, have all been credited with the invention.

The early history of the telephone is a confusing morass of claim and counterclaim, which was not clarified by the huge mass of lawsuits which hoped to resolve the patent claims of individuals. The Bell and Edison patents, however, were forensically victorious and commercially decisive.

Informasi salajengna: Invention of the telephone and Elisha Gray and Alexander Bell Controversy

Early development[édit | sunting sumber]

The following is a brief summary of the development of the telephone:

  • 28 December 1871Antonio Meucci files a patent caveat (n.3335) in the U.S. Patent Office titled "Sound Telegraph", describing communication of voice between two people by wire.
  • 1874—Meucci, after having renewed the caveat for two years, fails to find the money to renew it. The caveat lapses.
  • 6 April 1875—Bell's U.S. Patent 161,739 "Transmitters and Receivers for Electric Telegraphs" is granted. This uses multiple vibrating steel reeds in make-break circuits.
  • 11 February 1876—Gray invents a liquid transmitter for use with a telephone but does not build one.
  • 14 February 1876—Elisha Gray files a patent caveat for transmitting the human voice through a telegraphic circuit.
  • 14 February 1876—Alexander Bell applies for the patent "Improvements in Telegraphy", for electromagnetic telephones using undulating currents.
  • 19 February 1876—Gray is notified by the U.S. Patent Office of an interference between his caveat and Bell's patent application. Gray decides to abandon his caveat.
  • 7 March 1876—Bell's U.S. patent 174,465 "Improvement in Telegraphy" is granted, covering "the method of, and apparatus for, transmitting vocal or other sounds telegraphically … by causing electrical undulations, similar in form to the vibrations of the air accompanying the said vocal or other sound."[1]
  • 10 March 1876—The first successful telephone transmission of clear speech when Bell spoke into his device, “Mr. Watson, come here, I want to see you.” and Watson heard each word distinctly.[1]
  • 30 January 1877—Bell's U.S. patent 186,787 is granted for an electromagnetic telephone using permanent magnets, iron diaphragms, and a call bell.
  • 27 April 1877—Edison files for a patent on a carbon (graphite) transmitter. The patent 474,230 was granted 3 May 1892, after a 15 year delay because of litigation. Edison was granted patent 222,390 for a carbon granules transmitter in 1879.

Early commercial instruments[édit | sunting sumber]

Early telephones were technically diverse. Some used a liquid transmitter, some had a metal diaphragm that induced current in an electromagnet wound around a permanent magnet, and some were "dynamic" - their diaphragm vibrated a coil of wire in the field of a permanent magnet or the coil vibrated the diaphragm. This dynamic kind survived in small numbers through the 20th century in military and maritime applications where its ability to create its own electrical power was crucial. Most, however, used the Edison/Berliner carbon transmitter, which was much louder than the other kinds, even though it required an induction coil, actually acting as an impedance matching transformer to make it compatible to the impedance of the line. The Edison patents kept the Bell monopoly viable into the 20th century, by which time the network was more important than the instrument.

Early telephones were locally powered, using a dynamic transmitter or else powering the transmitter with a local battery. One of the jobs of outside plant personnel was to visit each telephone periodically to inspect the battery. During the 20th century, "common battery" operation came to dominate, powered by "talk battery" from the telephone exchange over the same wires that carried the voice signals. Late in the century, wireless handsets brought a revival of local battery power.

Early telephones had one wire for both transmitting and receiving of audio, with ground return as used in telegraphs. The earliest dynamic telephones also had only one opening for sound, and the user alternately listened and spoke (rather, shouted) into the same hole. Sometimes the instruments were operated in pairs at each end, making conversation more convenient but were more expensive.

At first, the benefits of an exchange were not exploited. Telephones instead were leased in pairs to the subscriber, who had to arrange telegraph contractors to construct a line between them, for example between his home and his shop. Users who wanted the ability to speak to several different locations would need to obtain and set up three or four pairs of telephones. Western Union, already using telegraph exchanges, quickly extended the principle to its telephones in New York City and San Francisco, and Bell was not slow in appreciating the potential.

Signalling began in an appropriately primitive manner. The user alerted the other end, or the exchange operator, by whistling into the transmitter. Exchange operation soon resulted in telephones being equipped with a bell, first operated over a second wire and later with the same wire using a condenser. Telephones connected to the earliest Strowger automatic exchanges had seven wires, one for the knife switch, one for each telegraph key, one for the bell, one for the push button and two for speaking.

Rural and other telephones that were not on a common battery exchange had a "magneto" or hand cranked generator to produce a high voltage alternating signal to ring the bells of other telephones on the line and to alert the operator.

In the 1890s a new smaller style of telephone was introduced, packaged in three parts. The transmitter stood on a stand, known as a "candlestick" for its shape. When not in use, the receiver hung on a hook with a switch in it, known as a "switchhook." Previous telephones required the user to operate a separate switch to connect either the voice or the bell. With the new kind, the user was less likely to leave the phone "off the hook". In phones connected to magneto exchanges, the bell, induction coil, battery and magneto were in a separate "bell box." In phones connected to common battery exchanges, the bell box was installed under a desk, or other out of the way place, since it did not need a battery or magneto.

Cradle designs were also used at this time, having a handle with the receiver and transmitter attached, separate from the cradle base that housed the magneto crank and other parts. They were larger than the "candlestick" and more popular.

Disadvantages of single wire operation such as crosstalk and hum from nearby AC power wires had already led to the use of twisted pairs and, for long distance telephones, four-wire circuits. Users at the beginning of the 20th century did not place long distance calls from their own telephones but made an appointment to use a special sound proofed long distance telephone booth furnished with the latest technology.

What turned out to be the most popular and longest lasting physical style of telephone was introduced in the early 20th century, including Bell's Model 102. A carbon granule transmitter and electromagnetic receiver were united in a single molded plastic handle, which when not in use sat in a cradle in the base unit. The circuit diagram of the Model 102 shows the direct connection of the receiver to the line, while the transmitter was induction coupled, with energy supplied by a local battery. The coupling transformer, battery, and ringer were in a separate enclosure. The dial switch in the base interrupted the line current by repeatedly but very briefly disconnecting the line 1-10 times for each digit, and the hook switch (in the center of the circuit diagram) permanently disconnected the line and the transmitter battery while the handset was on the cradle.

After the 1930s, the base also enclosed the bell and induction coil, obviating the old separate bell box. Power was supplied to each subscriber line by central office batteries instead of a local battery, which required periodic service. For the next half century, the network behind the telephone became progressively larger and much more efficient, but after the dial was added the instrument itself changed little until touch tone replaced the dial in the 1960s.

Digital telephony[édit | sunting sumber]

Red right arrow.svg
 Artikel utama: Digital Telephony.

The Public Switched Telephone Network (PSTN) has gradually evolved towards digital telephony which has improved the capacity and quality of the network. End-to-end analog telephone networks were first modified in the early 1960s by upgrading transmission networks with T1 carrier systems. Later technologies such as SONET and fiber optic transmission methods further advanced digital transmission. Although analog carrier systems existed, digital transmission made it possible to significantly increase the number of channels multiplexed on a single transmission medium. While today the end instrument remains analog, the analog signals reaching the aggregation point (Serving Area Interface (SAI) or the central office (CO) ) are typically converted to digital signals. Digital loop carriers (DLC) are often used, placing the digital network ever closer to the customer premises, relegating the analog local loop to legacy status.

IP telephony[édit | sunting sumber]

Internet Protocol (IP) telephony (also known as Internet telephony) is a service based on Voice over IP (VoIP), a disruptive technology that is rapidly gaining ground against traditional telephone network technologies. In Japan and South Korea up to 10% of subscribers, as of January 2005, have switched to this digital telephone service. A January 2005 Newsweek article suggested that Internet telephony may be "the next big thing." [1]

As of 2006 many VoIP companies offer service to consumers and businesses.

IP telephony uses a broadband Internet connection to transmit conversations as data packets. In addition to replacing POTS(plain old telephone service), IP telephony is also competing with mobile phone networks by offering free or lower cost connections via WiFi hotspots. VoIP is also used on private wireless networks which may or may not have a connection to the outside telephone network.

Usage[édit | sunting sumber]

By the end of 2006, there were a total of nearly 4 billion mobile and fixed line subscribers and over 1 billion Internet users worldwide. This included 1.27 billion fixed line subscribers and 2.68 billion mobile subscribers. [2]

Telephone operating companies[édit | sunting sumber]

In some countries, many telephone operating companies (commonly abbreviated to telco in American English) are in competition to provide telephone services. Some of them are included in the following list. However, the list only includes facilities based providers and not companies which lease services from facilities based providers in order to serve their customers.


Patents[édit | sunting sumber]

  • US 174,465 -- Telegraphy (Bell's first telephone patent) -- Alexander Graham Bell
  • US 186,787 -- Electric Telegraphy (permanent magnet receiver) -- Alexander Graham Bell
  • US 474,230 -- Speaking Telegraph (graphite transmitter) -- Thomas Edison
  • US 203,016 -- Speaking Telephone (carbon button transmitter) -- Thomas Edison
  • US 222,390 -- Carbon Telephone (carbon granules transmitter) -- Thomas Edison
Wiktionary-logo-en.png
Tempo cordless telephone dina Wiktionary, kamus bébas.
  • US 485,311 -- Telephone (solid back carbon transmitter) -- Anthony C. White (Bell engineer) This design was used until 1925 and installed phones were used until the 1940s.
  • US 3,449,750 -- Duplex Radio Communication and Signalling Appartus -- G. H. Sweigert
  • US 3,663,762 -- Cellular Mobile Communication System -- Amos Edward Joel (Bell Labs)
  • US 3,906,166 -- Radio Telephone System (DynaTAC cell phone) -- Martin Cooper et al. (Motorola)

See also[édit | sunting sumber]

Wiktionary-logo-en.png
Tempo telephone dina Wiktionary, kamus bébas.

References[édit | sunting sumber]

  • Coe, Lewis (1995), The Telephone and Its Several Inventors: A History, McFarland, North Carolina, 1995. ISBN 0-7864-0138-9
  • Evenson, A. Edward (2000), The Telephone Patent Conspiracy of 1876: The Elisha Gray - Alexander Bell Controversy, McFarland, North Carolina, 2000. ISBN 0-7864-0883-9
  • Baker, Burton H. (2000), The Gray Matter: The Forgotten Story of the Telephone, Telepress, St. Joseph, MI, 2000. ISBN 0-615-11329-X
  • Huurdeman, Anton A. (2003), The Worldwide History of Telecommunications, IEEE Press and J. Wiley & Sons, 2003. ISBN 0-471-20505-2
  • Josephson, Matthew (1992), Edison: A Biography, Wiley, 1992. ISBN 0-471-54806-5
  • Bruce, Robert V. (1990), Alexander Graham Bell and the Conquest of Solitude, Cornell University Press, Ithaca, 1990.

Further reading[édit | sunting sumber]

Tumbu luar[édit | sunting sumber]

Wikimedia Commons logo
Wikimedia Commons mibanda média séjénna nu patali jeung artikel ieu dina kaca