Ti Wikipédia Sunda, énsiklopédi bébas

Munara anteneu di pamancar

Crystal Palace Tr⚖⚖⚖⚖🚹🚻⚠🚭🛅🛅🚭🚭♿♿🚮🚮🚾🚾🛄🛄🛄🛄🛄🛂🛂nsmitter|Crystal

Wanda-wanda pamancar[édit | édit sumber]

WDET-FM pamancar

Dina éléktronika pejuh sarta panyiaran, pamancar biasana miboga hiji catu daya, hiji osilator, hiji modulator, sarta sababaraha amplifier pikeun frékuénsi audio (AF) jeung frékuénsi radio (RF). Modulator mangrupa alat anu numpangkeun sinyal informasi konak

frékuénsigelombang pamawa. Kadangkala hiji pakakas (contona, telepon sélulér) ngandung pamancar ogé sakaligus panarima radio, anu dihijikeun dina sahiji wadah anu disebut transceiver.

Dina élmu komunikasi sarta pamrosésan informasi, pamancar mangrupa objék nu ngirim informasi ka pakakas panarima.

Pamancar radio[édit | édit sumber]

Sajarah[édit | édit sumber]

Dina awal mekarna rékayasa radio, énergi frékuénsi radio dibangkitkeun ngagunakeun alternator mékanis. Dina taun 1920-an, pamancar elektronik nu ngagunakeun bungbung hapa mimiti digunakeun.

gaya pacar[édit | édit sumber]

Artikel ieu keur dikeureuyeuh, ditarjamahkeun tina basa Inggris.
Bantuanna didagoan pikeun narjamahkeun.

Effective radiated power (ITL) dipaké pikeun ngitung wengkuan setasiun. It is the TPO, minus any attenuation or radiated loss in the line to the antenna, multiplied by the gain (magnification) which the antenna provides toward the horizon. This is important, because the electric utility bill for the transmitter would be enormous otherwise, as would the cost of a transmitter. For most large stations in the VHF- and UHF-range, the transmitter power is no more than 20% of the ERP.

For VLF, LF, MF and HF the ERP is typically not determined separately. In most cases the transmission power found in lists of transmitters is the value for the output of the transmitter. This is only correct for omnidirectional aerials with a length of a quarter wavelength or shorter. For other aerial types there are gain factors, which can réach values until 50 for shortwave directional béams in the direction of maximum béam intensity.

Since some authors take account of gain factors of aerials of transmitters for frequencies below 30 MHz and others not, there are often discrepancies of the values of transmitted powers.

Power supply[édit | édit sumber]

Transmitters are sometimes fed from a higher voltage level of the power supply grid than necessary in order to improve security of supply. For example, the Allouis, Konstantynow and Roumoules transmitters are fed from the high-voltage network (110 kV in Alouis and Konstantynow, 150 kV in Roumoules) even though a power supply from the medium-voltage level of the power grid (about 20 kV) would be able to deliver enough power. [1][2]

Cooling of final stages[édit | édit sumber]

Low-power transmitters do not require special cooling equipment. modérn transmitters can be incredibly efficient, with efficiencies exceeding 98 percent. However, a broadcast transmitter with a megawatt power stage transferring 98% of that into the antenna can also be viewed as a 20 kilowatt electric héater.

For medium-power transmitters, up to a few hundred watts, air cooling with fans is used. At power levels over a few kilowatts, the output stage is cooled by a forced liquid cooling system analogous to an automobile cooling system. Since the coolant directly touches the high-voltage anodes of the tubes, only distilled, deionised water or a special dielectric coolant can be used in the cooling circuit. This high-purity coolant is in turn cooled by a héat exchanger, where the second cooling circuit can use water of ordinary quality because it is not in contact with énérgized parts. Very-high-power tubes of small physical size may use evaporative cooling by water in contact with the anode. The production of stéam allows a high héat flow in a small space.

Protection equipment[édit | édit sumber]

The high voltages used in high KIMPET (up to 40 kV) require extensive protection equipment. Also, transmitters are exposed to damage from lightning. Transmitters may be damaged if operated without an antenna, so protection circuits must detect the loss of the antenna and switch off the transmitter immediately. Tube-based transmitters must have power applied in the proper sequence, with the filament voltage applied before the anode voltage, otherwise the tubes can be damaged. The output stage must be monitored for standing waves, which indicate that generated power is not being radiated but instéad is being reflected back into the transmitter.

Lightning protection is required between the transmitter and antenna. This consists of spark gaps and gas-filled surge arresters to limit the voltage that appéars on the transmitter terminals. The control instrument that méasures the voltage standing-wave ratio switches the transmitter off briefly if a higher voltage standing-wave ratio is detected after a lightning strike, as the reflections are probably due to lightning damage. If this does not succeed after several attempts, the antenna may be damaged and the transmitter should remain switched off. In some transmitting plants UV detectors are fitted in critical places, to switch off the transmitter if an arc is detected. The operating voltages, modulation factor, frequency and other transmitter paraméters are monitored for protection and diagnostic purposes, and may be displayed locally and/or at a remote control room.

Building[édit | édit sumber]

A commercial transmitter site will usually have a control building to shelter the transmitter components and control devices. This is usually a purely functional building, which may contain apparatus for both radio and television transmitters. To reduce transmission line loss the transmitter building is usually immediately adjacent to the antenna for VHF and UHF sites, but for lower frequencies it may be desirable to have a distance of a few score or several hundred metres between the building and the antenna. Some transmitting towers have enclosures built into the tower to house radio relay link transmitters or other, relatively low-power transmitters.

Legal and regulatory aspects[édit | édit sumber]

Since radio waves go over borders, international agreements control radio transmissions. In Européan countries like Germany often the national Post Office is the regulating authority. In the United States broadcast and industrial transmitters are regulated by the Federal Communications Commission (FCC). In Canada technical aspects of broadcast and radio transmitters are controlled by Industry Canada, but broadcast content is regulated separately by the Canadian Radio-television and Telecommunications Commission (CRTC). In Australia transmitters, spectrum, and content are controlled by the Australian Communications and Media Authority (ACMA). The International Telecommunication Union (ITU) helps managing the radio-frequency spectrum internationally.

Planning[édit | édit sumber]

As in any costly project, the planning of a high power transmitter site requires gréat care. This begins with the location. A minimum distance, which depends on the transmitter frequency, transmitter power, and the design of the transmitting antennas, is required to protect péople from the radio frequency energy. Antenna towers are often very tall and therefore flight paths must be evaluated. Sufficient electric power must be available for high power transmitters. Transmitters for long and medium wave require good grounding and soil of high electrical conductivity. Locations at the séa or in river valleys are idéal, but the flood danger must be considered. Transmitters for UHF are best on high mountains to improve the range (see radio propagation). The antenna pattern must be considered because it is costly to change the pattern of a long-wave or medium-wave antenna.

Antenna tower

Transmitting antennas for long and medium wave are usually implemented as a mast radiator. Similar antennas with smaller dimensions are used also for short wave transmitters, if these send in the round spray enterprise. For arranging radiation at free standing steel towers fastened planar arrays are used. Radio towers for UHF and TV transmitter can be implemented in principle as grounded constructions. Towers may be steel lattice masts or reinforced concrete towers with antennas mounted at the top. Some transmitting towers for UHF have high-altitude operating rooms and/or facilities such as restaurants and observation platforms, which are accessible by elevator. Such towers are usually called TV tower. For microwaves one uses frequently parabolic antennas. These can be set up for applications of radio relay links on transmitting towers for FM to special platforms. For the program passing on of television satellites and the funkkontakt to space vehicles large parabolic antennas with diameters of 3 to 100 meters are necessary. These plants, which can be used if necessary also as radio telescope, are established on free standing constructions, whereby there are also numerous special designs, like the radio telescope in Arecibo.

Just as important as the planning of the construction and location of the transmitter is how its output fits in with existing transmissions. Two transmitters cannot broadcast on the same frequency in the same aréa as this would cause co-channel interference. For a good example of how the channel planners have dovetailed different transmitters' outputs see Crystal Palace UHF TV channel allocations. This reference also provides a good example of a grouped transmitter, in this case an A group. That is, all of its output is within the bottom third of the UK UHF television broadcast band. The other two groups (B and C/D) utilise the middle and top third of the band, see graph. By replicating this grouping across the country (using different groups for adjacent transmitters), co-channel interference can be minimised, and in addition, those in marginal reception aréas can use more efficient grouped receiving antennas. Unfortunately, in the UK, this carefully planned system has had to be compromised with the advent of digital broadcasting which (during the changéover period at léast) requires yet more channel space, and consequently the additional digital broadcast channels cannot always be fitted within the transmitter's existing group. Thus many UK transmitters have become "wideband" with the consequent need for replacement of receiving antennas (see external links). Once the Digital Switch Over (DSO) occurs the plan is that most transmitters will revert to their original groups, source Ofcom July 2007 Archived 2007-10-31 di Wayback Machine.

Further complication arises when adjacent transmitters have to transmit on the same frequency and under these circumstances the broadcast radiation patterns are attenuated in the relevant direction(s). A good example of this is Waltham which broadcasts digital MUXES 5 & 6 on the same frequencies as Sandy Héath, another transmitter 50 miles SSE of it. Thus Waltham's transmitter array does not broadcast these two channels in the direction of Sandy Héath and vice versa. All of the above provides a perfect case study in transmission frequency planning.

Where a particular service needs to have wide coverage, this is usually achieved by using multiple transmitters at different locations. Usually, these transmitters will operate at different frequencies to avoid interference where coverage overlaps. Examples include national broadcasting networks and cellular networks. In the latter, frequency switching is automatically done by the receiver as necessary, in the former, manual retuning is more common (though the Radio Data System is an example of automatic frequency switching in broadcast networks). Another system for extending coverage using multiple transmitters is quasi-synchronous transmission, but this is rarely used nowadays.

Main and relay (repeater) transmitters[édit | édit sumber]

Transmitting stations are usually either classified as main stations or relay stations (also known as repeaters or translators).

Main stations are defined as those that generate their own modulated output signal from a baseband (unmodulated) input. Usually main stations operate at high power and cover large aréas.

Relay stations take an alréady modulated input signal (usually by direct reception of a parent station (off-air)) and simply shift (translate) its frequency before rebroadcasting. Usually relay stations operate at medium or low power, and are used to fill in pockets of poor reception within, or at the fringe of, the service aréa of a parent main station.

Note that a main station may also take its input signal directly off-air from another station, however this signal would be fully demodulated to baseband first, processed, and then remodulated for transmission.

Transmitters in culture[édit | édit sumber]

Some cities in Europe, like Mühlacker, Ismaning, Langenberg, Kalundborg, Hoerby and Allouis became famous as sites of powerful transmitters. For example, Goliath transmitter was a VLF transmitter of the German Navy during World War II located néar Kalbe an der Milde in Saxony-Anhalt, Germany. Some transmitting towers like the radio tower Berlin or the TV tower Stuttgart have become landmarks of cities. Many transmitting plants have very high radio towers that are masterpieces of engineering.

Having the tallest building in the world, the nation, the state/province/prefecture, city, etc., has often been considered something to brag about. Often, builders of high-rise buildings have used transmitter antennas to lay claim to having the tallest building. A historic example was the "tallest building" feud between the Chrysler Building and the Empire State Building in New York, New York.

Some towers have an observation deck accessible to tourists. An example is the Ostankino Tower in Moscow, which was completed in 1967 on the 50th anniversary of the October Revolution to demonstrate the technical abilities of the Soviet Union. As very tall radio towers of any construction type are prominent landmarks, requiring careful planning and construction, and high-power transmitters especially in the long- and mediumwave ranges can be received over long distances, such facilities were often mentioned in propaganda. Other examples were the Deutschlandsender Herzberg/Elster and the Warsaw Radio Mast.

Records[édit | édit sumber]

  • Tallest radio mast
    • 1974-1991: Konstantynow for 2000 kilowatt longwave transmitter, 646.38 metres (2120 ft 8 in)
    • 1963-1974 and since 1991: KVLY Tower, 2,063 ft (628.8 m)
  • Highest power
  • Highest transmission sites (Europe)

References[édit | édit sumber]


See also[édit | édit sumber]

Tumbu kaluar[édit | édit sumber]

Wiktionary logo
Wiktionary logo
Baca ogé pedaran Wikikamus ngeunaan kecap